A Comparative Assessment of Classification Algorithms for Cardiotocography Dataset
ثبت نشده
چکیده
Cardiotocography (CTG) is a simultaneous recording of fetal heart rate (FHR) and uterine contractions (UC). It is one of the most common diagnostic techniques to evaluate maternal and fetal well-being during pregnancy and before delivery. By observing the Cardiotocography trace patterns doctors can understand the state of the fetus. There are several signal processing and computer programming based techniques for interpreting a typical Cardiotocography data. Even few decades after the introduction of cardiotocography into clinical practice, the predictive capacity of the these methods remains controversial and still inaccurate. In this paper, we implement a model based CTG data classification system using a supervised SVM, NB and Decision Tree which can classify the CTG data based on its training data. According to the arrived results, the performance of the supervised machine learning based classification approach provided significant performance. We used Accuracy, specificity, NPV, Precision, Recall and ROC as the metric to evaluate the performance. It was found that, the SVM based classifier was capable of identifying Normal, Suspicious and Pathologic condition, from the nature of CTG data with very good accuracy. Keywords— CTG , Data mining , Classification , Support Vector Machine and Decision Tree.
منابع مشابه
Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملA Modified Grey Wolf Optimizer by Individual Best Memory and Penalty Factor for Sonar and Radar Dataset Classification
Meta-heuristic Algorithms (MA) are widely accepted as excellent ways to solve a variety of optimization problems in recent decades. Grey Wolf Optimization (GWO) is a novel Meta-heuristic Algorithm (MA) that has been generated a great deal of research interest due to its advantages such as simple implementation and powerful exploitation. This study proposes a novel GWO-based MA and two extra fea...
متن کاملDiagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms
Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملCardiotocography - A Comparative Study between Support Vector Machine and Decision Tree Algorithms
Cardiotocography (CTG) is a simultaneous recording of Fetal Heart Rate (FHR) and Uterine Contractions (UC). It is one of the most common diagnostic techniques to evaluate maternal and fetal well-being during pregnancy and before delivery. By observing the Cardiotocography trace patterns doctors can understand the state of the fetus. There are several signal processing and computer programming b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017